
AN OVERVIEW OF C
CSE 130: Introduction to Programming in C

Stony Brook University



WHY C?

➤ C is a programming “lingua franca”
➤ Millions of lines of C code exist
➤ Many other languages use C-like syntax 
➤ C is “portable”

➤ C compilers exist for most platforms 
➤ C is used for embedded systems, operating systems, and 

thousands of applications 



PROGRAMMING LANGUAGES

➤ Programming language: a form of notation used to describe an 
algorithm to a computer 

➤ As programmers, we are concerned with:
➤ syntax = the rules of the language
➤ semantics = the meaning of a program 

➤ The compiler will only check syntax for you!



TYPES OF ERRORS

➤ Syntax Errors: Incorrect program “grammar” 
➤ Run-Time Errors: Illegal operations during execution

➤ e.g., Division by zero 
➤ Logic Errors: Incorrect program results



COMPILING A PROGRAM

➤ gcc — the GNU C Compiler
➤ gcc is installed on Sparky
➤ Usage:

sparky% gcc filename.c

sparky% gcc -o name filename.c

➤ Other compilers include Xcode and Microsoft Visual Studio 



EXECUTING A PROGRAM

➤ To execute a compiled program on Sparky, type ./filename

➤ For example:
➤ sparky% ./a.out

➤ sparky% ./myprog



A FIRST PROGRAM

/* My first C program */

#include <stdio.h>

int main (void)

{

printf(“Hello world!\n”);

return 0;

} 



PROGRAM COMPILATION



PUNCTUATION IN C

➤ Statements are terminated with a ; (semicolon)
➤ Groups of statements are enclosed by curly braces: { and }
➤ Commas separate function arguments
➤ Whitespace is ignored (but indentation is recommended as 

part of good coding style)



COMMENTS

/* My first C program */
#include <stdio.h>
int main (void)
{

printf(“Hello world!\n”);

return 0;

}



COMMENTS ON COMMENTS

➤ Comments are: 
➤ used to document code
➤ ignored by the compiler
➤ delimited by /* and */
➤ required in this class 

➤ Comments add value to your code
➤ They explain how and why you are doing something



PREPROCESSING DIRECTIVES

/* My first C program */
#include <stdio.h>
int main (void)
{

printf(“Hello world!\n”);

return 0;

}



#INCLUDE STATEMENTS

➤ Our sample program uses a function (piece of code) named 
printf()

➤ printf() is defined in a file named stdio.h

➤ The #include statement tells the compiler that it can find 
the definition of printf() elsewhere (in stdio.h) 

➤ Analogy: the bibliography of a term paper



STANDARD LIBRARIES IN C

➤ Standard libraries contain frequently-used functions for C 
programs
➤ Ex. input/output, math functions

➤ stdio.h is the C standard library for input and output 
functions

➤ You can also create your own libraries of common code for 
your programs



THE C PREPROCESSOR 

➤ Files are passed to the preprocessor before they move on to 
the compiler

➤ The preprocessor:
➤ strips out comments
➤ makes substitutions for named constants
➤ inserts the contents of #include-d files

➤ Directives to the preprocessor begin with #



THE MAIN ( ) FUNCTION

/* My first C program */ 

#include <stdio.h>
int main (void)
{ 

printf(“Hello world!\n”);
return 0; 

}



MORE ON MAIN ( ) 

➤ Program execution begins and ends with the main() function 
➤ Program statements are executed sequentially
➤ When all of the statements in main() have been executed, 

the program terminates



THE PRINT STATEMENT

/* My first C program */
#include <stdio.h>
int main (void)
{

printf(“Hello world!\n”);

return 0;

}



THE printf() STATEMENT 

➤ The printf() function:
➤ sends program output to the display
➤ is part of the standard I/O library

➤ Output is specified in a quote-enclosed “control string”
➤ ‘\n’ is a special “newline” character



THE RETURN STATEMENT 

/* My first C program */
#include <stdio.h>
int main (void)
{

printf(“Hello world!\n”);

return 0;

}



RETURN VALUES 

➤ Many functions return values
➤ e.g., a mathematical function

➤ main() returns a value (exit status code) to the operating 
system to indicate program status

➤ Here, 0 means “everything completed OK”



PROGRAM STRUCTURE 

1.Preprocessor Directives
a. #include-d files
b. Other definitions/declarations

2.Supporting Functions 
3.The main() function



EXAMPLE PROGRAM 2

#include <stdio.h> 

int main (void)

{

printf(“Programming is fun.\n”);

printf(“Doing it in C is even more fun.\n”);

return 0;

}



EXAMPLE PROGRAM 3

#include <stdio.h> 

int main (void)

{ 

printf(“Testing...\n..1\n...2\n....3\n”);

return 0;

}



VARIABLES

➤ Programs use variables to store data
➤ Variables are named blocks of memory
➤ Variables must be declared before use
➤ Different kinds of variables store different kinds of data

➤ integers, floating-point numbers, characters



DECLARING VARIABLES

➤ Variables may be declared with or without an initial value:

int x;

int y = 5;

int z = x;

➤ Variables must be assigned a value before use



VARIABLES AND MEMORY

int a; /* a can hold an int value */

int b = 3; /* b holds the value 3 */



ASSIGNMENTS

➤ Assignments store values in variables 
➤ General form:

<target variable> = <expression>;

➤ “=” means “is assigned the value”, not “is equal to”!!! 
➤ Example: area = length * width;



PROGRAM 4

#include <stdio.h>

int main(void)

{

int feet = 6;

int inches = feet * 12;

printf(”%d feet = %d inches”,feet,inches);

return 0;

}



ANALYSIS OF PROGRAM 4

➤ feet and inches are integer variables
➤ %d is a placeholder (format specifier) for an int variable
➤ Program output:

6 feet = 72 inches



USER INPUT

➤ The printf() function is used to display output on the 
screen

➤ The scanf() function is used to read input from the 
keyboard

➤ scanf() is also defined in stdio.h



USING scanf()

➤ scanf() reads in data and stores it in one or more variables

int userAge;
scanf(“ %d”, &userAge);



scanf() USAGE

➤ The first argument (the control string) contains a series of 
placeholders
➤ These are like the ones that printf() uses:

%d = int, %f = float, %c = char, etc.

➤ Spaces are used to separate placeholders and absorb 
whitespace

➤ “ %d” absorbs leading spaces and reads an integer value



scanf() USAGE, PT. 2

➤ The remaining arguments to scanf() are a comma-separated 
list of variable names
➤ Input is stored in these variables
➤ Each variable name is preceded by &

➤ &i means “the memory address associated with variable i”
➤ We’ll talk more about this later on



scanf() EXAMPLES

int a, b, c;

char d;

scanf(“ %d %d”, &a, &b); 

scanf(“ %c %d”, &d, &c); 


